Microwave Technology
(COMM 903)

Contents

• Introduction:
 – Course contents.
 – Assessment.
 – References.

• Microwave Sources.

• Transistor Model Extraction.

• Signal flow graphs.
Course Contents

- **Active Microwave & RF Circuits Analysis & Design**
 - Noise, Microwave Sources, Amplifiers, Mixers & Oscillators.

- **Metamaterials and Transmission Lines**
 - Basic properties, Transmission Line Implementations and Applications.

Teaching Assistant (Tutorials)

→ Engs. Randa El Khosht

Teaching Assistant (Advanced Comm. Lab.)

→ Eng. Yasmine Abdella

References

→ Lecture Notes
Assessment

<table>
<thead>
<tr>
<th>Assessment Item</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quizzes (2-3)</td>
<td>15</td>
</tr>
<tr>
<td>Tutorial Assignments</td>
<td>5</td>
</tr>
<tr>
<td>Project</td>
<td>10</td>
</tr>
<tr>
<td>Mid Term Examination</td>
<td>25</td>
</tr>
<tr>
<td>Final Examination</td>
<td>45</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

Microwave Sources

- **Solid State Sources**
 - Low Power & Low Frequencies Sources
- **Microwave Tubes**
 - High Power &/or high frequencies Sources

© Dr. Hany Hammad, German University in Cairo
Microwave Tubes

Types of Microwave Tubes:
- Klystron
- TWT (Traveling Wave Tubes)
 - Helix TWT.
 - Coupled cavity TWT.
- Magnetron.
- Gyroton.
- Gridded Tube.
- CFA (crossed field amplifiers)

Solid State Sources

- **Advantages:**
 - Small Size.
 - Low Cost.
 - Compatibility with microwave integrated circuits.

- **Disadvantages:**
 - Low power.
 - Low frequencies.
Solid State Sources

- Can be categorized as:
 - Two terminal devices
 - Ex.: Diodes.
 - Three terminal devices
 - Ex.: Transistor oscillators.

Diode Sources

- Most common diode sources:
 - Gunn diode.
 - IMPATT diode.

- Directly convert DC bias to RF power in the frequency range of 2 to 100 GHz.
Gunn Diode

- Even though everyone uses this term! It’s more accurate name is a “Transferred Electron Device” (TED). Why isn’t it a "real" diode? Because it only uses N-type semiconductor.
- Gunn diodes have been around since John Gunn discovered that bulk N-type GaAs can be made to have a negative resistance effect.
- **Three regions exist:** two of them are heavily N-doped on each terminal, with a thin layer of lightly doped material in between.

Gunn Diode

Two Gunn diode sources. The unit on the left is a mechanically tunable E-band source, while the unit on the right is a varactor-tuned V-band source.
FET

Fixed Biasing Circuit For JFET

Small Signal Models

© Dr. Hany Hammad, German University in Cairo
The GaAs MESFET Structure

Cross sectional view of the GaAs MESFET structure shows the depletion region below the gate

The contact of the gate is made of metal-semiconductor Schottky Contact rather than a metal-oxide-semiconductor (MOS) structure, which is used in the MOSFET device. This approach minimizes the device’s gate to source capacitance, which otherwise would degrade the high-frequency gain performance.

The GaAs MESFET

\[g_m = \frac{w \varepsilon_s v_{sat}}{h_d} \]

\[f_T = \frac{g_m}{2\pi C_{gs}} \]

\[C_{gs} = \frac{w \varepsilon_s l_g}{h_d} \]

At frequencies above \(f_T \) the current passing through the \(C_{gs} \) is greater than that produced by the transconductance, therefore, \(f_T \) represents a fundamental high-frequency limit.

For optimum high-frequency performance, the device designer must either increase the saturated carrier velocity or decrease the gate length.
Device Characterization and Modeling

- **Small signal model** Intrinsic & Extrinsic elements is determined using the hot and cold deembedded S-parameters measurements.

- **Large Signal model** is determined by using the semi-empirical method, and it uses the measured pulsed dc I-V data of the device and no assumptions are made relating to the physical operation of the device itself.

- One key issue in **S-parameters measurements** is the accurate calibration of the network analyzer. The calibration of the instrument should remove unwanted and repeatable information, such as the effects of non-ideal transmission lines, connectors, and circuit parasitic.

Small-signal device modeling procedure

1. Measure cold S parameters
2. Measure hot S parameters
3. Deembed cold S parameters
4. Deembed hot S parameters
5. Model and optimize deembedded cold S parameters
6. Model and optimize deembedded hot S parameters
7. Final small-signal equivalent circuit model

Cold
- $V_{ds} = 0$ V
- $V_{gs} = -3$ V (pinch off)
Hot S-parameters Extraction

![Diagram of Hot S-parameters](image)

\[C_{dc} = \text{diode layer capacitance} \]

\[R_g \text{ and } R_d \text{ represent the device's gate and drain resistance.} \]

\[R_s \text{ and } L_s \text{ are the source resistance and inductance.} \]

The extrinsic parameters \(C_{gp}, C_{dp}, L_g, L_d, R_s, R_g \) and \(R_d \).

The gate and drain bond-pad capacitance \((C_{pg} \text{ and } C_{pd}) \) in the modeling process.

Cold S-parameters Extraction

![Diagram of Cold S-parameters](image)
Cold S-parameters Extraction

\[
\begin{align*}
Z_{c11} &= R_s + R_x + j[\omega(L_x + L_s) + 1/\omega C_{ab}] \\
Z_{c12} &= Z_{c21} = R_x + j[\omega L_x - 1/\omega C_s] \\
Z_{c22} &= R_x + R_s + j[\omega(L_d + L_s) - 1/\omega C_{bc}] \\
C_{ab} &= C_a^{-1} + C_b^{-1} \quad C_{bc} = C_b^{-1} + C_c
\end{align*}
\]

\[
R_g = \text{Re}(Z_{c11} - Z_{c12})
\]

\[
R_s = \text{Re}(Z_{c12})
\]

\[
R_d = \text{Re}(Z_{c22} - Z_{c12})
\]

\[
\omega \text{Im}(Z_{c11}) = \omega^2(L_x + L_s) - 1/\omega C_{ab}
\]

\[
\omega \text{Im}(Z_{c12}) = \omega^2 L_x - 1/\omega C_s
\]

\[
\omega \text{Im}(Z_{c22}) = \omega^2(L_d + L_s) - 1/\omega C_{bc}
\]

Hot S-parameters Extraction

\[
Y_{11} = j\omega C_{gd} + \frac{1}{R_i + j\omega C_{gs}}
\]

\[
Y_{12} = -j\omega C_{gd}
\]

\[
Y_{21} = g_m e^{-j\omega \tau} \left[1 + j\omega R_s C_{gs} \right] - j\omega C_{gd}
\]

\[
Y_{22} = \frac{1}{R_d} + j\omega (C_{ds} + C_{gd})
\]

\[\text{Broadband Microwave Amplifiers}\]

© Dr. Hany Hammad, German University in Cairo

Broadband Microwave Amplifiers by Bal S. Virdee, Avtar S. Virdee, & Ben Y. Banyamin

Copyright © 2004 Artech House
Model Extraction

\[
C_{gd} = -\text{Im}(Y_{11})/\omega
\]

\[
C_{gs} = \frac{\text{Im}(Y_{11}) - \omega C_{gd}}{\omega} \left(1 + \frac{[\text{Re}(Y_{11})]}{[\text{Im}(Y_{11}) - \omega C_{gd}]} \right)
\]

\[
R_e = \left[\text{Re}(Y_{11}) / \text{Im}(Y_{11}) - \omega C_{gd} \right] + \text{Re}(Y_{11})
\]

\[
g_{mo} = \sqrt{[\text{Re}(Y_{21})]^2 + [\text{Im}(Y_{11}) - \omega C_{gd}]} \left[1 + \omega^2 C_{gs} R_s \right] \left(g_{mo} \right)
\]

\[
\tau = (1/\omega) \sin^{-1} \left[\frac{-\omega C_{gd} - \text{Im}(Y_{21}) - \text{Re}(Y_{21}) \omega C_{gs} R_s}{g_{mo}} \right]
\]

\[
C_{ds} = \frac{\text{Im}(Y_{22})}{\omega} - \omega C_{gd}
\]

\[
R_{ds} = \frac{1}{\text{Re}(Y_{22})}
\]

© Dr. Hany Hammad, German University in Cairo

S-parameters files

© Dr. Hany Hammad, German University in Cairo
Extraction Steps

- Measure the S-parameters and save as .s2p file.
- Load file into Matlab (load file name.s2p)
- Convert the s2p to y-parameters using the equations (or using s2y command in matlab).

MESFET Model Extraction Project

\[
I_1 = Y_{11}V_1 + Y_{12}V_2 \\
I_2 = Y_{21}V_1 + Y_{22}V_2
\]
Finding Y_{11} & Y_{21}

In case of $V_2 = 0$

\[I_2 = -V_1(j\omega C_{gd}) + g_m v_{gs} \]

\[v_{gs} = \frac{V_1(j\omega C_{gd})}{R_i + j\omega C_{gs}R_i} = \frac{V_1}{1 + j\omega C_{gs}R_i} \]

\[I_2 = -V_1(j\omega C_{gd}) + \frac{g_m V_1}{1 + j\omega C_{gs}R_i} \]

\[Y_{21} = \left. \frac{I_2}{V_1 \v_{V_2=0}} \right| = \frac{g_m}{1 + j\omega C_{gs}R_i} - j\omega C_{gd} \]

\[Y_{11} = \left. \frac{I_1}{V_1 \v_{V_2=0}} \right| = j\omega C_{gd} + \left(\frac{1}{R_i + j\omega C_{gs}} \right) \]
Finding Y_{11} & Y_{21}

\[Y_{11} = j\omega C_{gd} + \left(\frac{j\omega C_{gs}}{1 + j\omega C_{gs}R_i} \right) \]
\[Y_{11} = j\omega C_{gd} + \frac{j\omega C_{gs} + \omega^2 C_{gs}^2 R_i}{1 + \omega^2 C_{gs}^2 R_i^2} \]

\[Y_{11} = \frac{\omega^2 C_{gs}^2 R_i}{D} + j\omega \left(\frac{C_{gs}}{D} + C_{gd} \right) \quad D = 1 + \omega^2 C_{gs}^2 R_i^2 \]
Extracted Model Parameters

NE321000 \(V_{ds} = 2 \) V \(I_d = 10 \) mA

\[C_{gd} = 2.2548 \times 10^{-14} F = 0.02548 \text{pF} \]
\[C_{gs} = 1.1782 \times 10^{-13} F = 0.11782 \text{pF} \]
\[R_i = 7.3838 \Omega \]
\[g_m = 0.0664 S \]
\[\tau = 3.5229 \times 10^{-13} \text{sec} = 0.35229 \text{psec} \]
\[C_{ds} = 4.7753 \times 10^{-14} F = 0.47753 \text{pF} \]
\[R_{ds} = 198.924 \Omega \]

Results \(Y_{11} \) (Measured Vs Calculated from extracted Model)
Results Y_{12} (Measured Vs Calculated from extracted Model)

Results Y_{21} (Measured Vs Calculated from extracted Model)
Results Y_{22} (Measured Vs Calculated from extracted Model)